




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B. C. D.2.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關系不確定3.已知復數滿足,其中為虛數單位,則().A. B. C. D.4.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.5.函數在上的圖象大致為()A. B. C. D.6.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.7.已知向量,,則與的夾角為()A. B. C. D.8.在中,,,,為的外心,若,,,則()A. B. C. D.9.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.610.函數的部分圖像大致為()A. B.C. D.11.臺球是一項國際上廣泛流行的高雅室內體育運動,也叫桌球(中國粵港澳地區的叫法)、撞球(中國臺灣地區的叫法)控制撞球點、球的旋轉等控制母球走位是擊球的一項重要技術,一次臺球技術表演節目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm12.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,邊長為1的正三角形中,點,分別在線段,上,將沿線段進行翻折,得到右圖所示的圖形,翻折后的點在線段上,則線段的最小值為_______.14.已知角的終邊過點,則______.15.已知等差數列的前n項和為Sn,若,則____.16.設向量,,且,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且18.(12分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長度.19.(12分)健身館某項目收費標準為每次60元,現推出會員優惠活動:具體收費標準如下:現隨機抽取了100為會員統計它們的消費次數,得到數據如下:假設該項目的成本為每次30元,根據給出的數據回答下列問題:(1)估計1位會員至少消費兩次的概率(2)某會員消費4次,求這4次消費獲得的平均利潤;(3)假設每個會員每星期最多消費4次,以事件發生的頻率作為相應事件的概率,從會員中隨機抽取兩位,記從這兩位會員的消費獲得的平均利潤之差的絕對值為,求的分布列及數學期望20.(12分)已知,且的解集為.(1)求實數,的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數取值范圍.21.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于,兩點,求的值.22.(10分)定義:若數列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數列”.(1)為“﹣數列”中的任意三項,則使得的取法有多少種?(2)為“﹣數列”中的任意三項,則存在多少正整數對使得且的概率為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
計算,再計算交集得到答案【詳解】,表示偶數,故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.2.C【解析】
由函數的增減性及導數的應用得:設,求得可得為增函數,又,,時,根據條件得,即可得結果.【詳解】解:設,則,即為增函數,又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數的增減性及導數的應用,屬中檔題.3.A【解析】
先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復數的基本運算,注意計算的準確度,屬于簡單題目.4.A【解析】
根據題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點睛】本題考查了常見幾何體的三視圖和體積計算,屬于基礎題.5.C【解析】
根據函數的奇偶性及函數在時的符號,即可求解.【詳解】由可知函數為奇函數.所以函數圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數的奇偶性的判定及奇偶函數圖像的對稱性,屬于中檔題.6.C【解析】
根據表示圓和直線與圓有公共點,得到,再利用二次函數的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數的性質,還考查了運算求解的能力,屬于中檔題.7.B【解析】
由已知向量的坐標,利用平面向量的夾角公式,直接可求出結果.【詳解】解:由題意得,設與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數量積求兩向量的夾角,注意向量夾角的范圍.8.B【解析】
首先根據題中條件和三角形中幾何關系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質,正弦定理,平面向量分解定理,屬于一般題.9.B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.10.A【解析】
根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.11.D【解析】
過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據,列方程求出,進而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.12.C【解析】
設,根據導數的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設,則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關系、直線與拋物線位置關系,拋物線兩切點所在直線求解是解題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設,,在中利用正弦定理得出關于的函數,從而可得的最小值.【詳解】解:設,,則,,∴,在中,由正弦定理可得,即,∴,∴當即時,取得最小值.故答案為.【點睛】本題考查正弦定理解三角形的應用,屬中檔題.14.【解析】
由題意利用任意角的三角函數的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數的定義,兩角和差正弦公式,屬于基礎題.15.【解析】
由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數列前n項和的性質,相對不難.16.【解析】
根據向量的數量積的計算,以及向量的平方,簡單計算,可得結果.【詳解】由題可知:且由所以故答案為:【點睛】本題考查向量的坐標計算,主要考查計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)x22+y2【解析】
(1)根據橢圓的幾何性質可得到a2,b2;(2)聯立直線和橢圓,利用弦長公式可求得弦長AB,利用點到直線的距離公式求得原點到直線l的距離,從而可求得三角形面積,再用單調性求最值可得值域.【詳解】(1)因為兩焦點與短軸的一個頂點的連線構成等腰直角三角形,所以a=2又由右準線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設B(x1,y1∵ON=6因為點B,N都在橢圓上,所以x122+y12所以OB=x②由原點O到直線l的距離為1,得|m|1+k2聯立直線l的方程與橢圓C的方程:y=kx+mx2設A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因為S=2λ(1-λ)在[并且當λ=45時,S=225所以△OAB的面積S的范圍為[10【點睛】圓錐曲線中最值與范圍問題的常見求法:(1)幾何法:若題目的條件和結論能明顯體現幾何特征和意義,則考慮利用圖形性質來解決;(2)代數法:若題目的條件和結論能體現一種明確的函數關系,則可首先建立目標函數,再求這個函數的最值.在利用代數法解決最值與范圍問題時常從以下幾個方面考慮:①利用判別式來構造不等關系,從而確定參數的取值范圍;②利用隱含或已知的不等關系建立不等式,從而求出參數的取值范圍;③利用基本不等式求出參數的取值范圍;④利用函數的值域的求法,確定參數的取值范圍.18.(1)(2)【解析】
(1)根據共線得到,利用正弦定理化簡得到答案.(2)根據余弦定理得到,,再利用余弦定理計算得到答案.【詳解】(1)∵與共線,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【點睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學生的綜合應用能力.19.(1)(2)22.5(3)見解析,【解析】
(1)根據頻數計算頻率,得出概率;(2)根據優惠標準計算平均利潤;(3)求出各種情況對應的的值和概率,得出分布列,從而計算出數學期望.【詳解】解:(1)估計1位會員至少消費兩次的概率;(2)第1次消費利潤;第2次消費利潤;第3次消費利潤;第4次消費利潤;這4次消費獲得的平均利潤:(3)1次消費利潤是27,概率是;2次消費利潤是,概率是;3次消費利潤是,概率是;4次消費利潤是,概率是;由題意:故分布列為:0期望為:【點睛】本題考查概率、平均利潤、離散型隨機變量的分布列和數學期望的求法,考查古典概型、相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,屬于中檔題.20.(1),;(2)【解析】
(1)解絕對值不等式得,根據不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標,通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【點睛】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應用,屬于中檔題.21.(1);(2)【解析】
(1)利用參數方程、普通方程、極坐標方程間的互化公式即可;(2)將直線參數方程代入圓的普通方程,可得,,而根據直線參數方程的幾何意義,知,代入即可解決.【詳解】(1)直線的參數方程為(為參數),消去;得曲線的極坐標方程為.由,,,可得,即曲線的直角坐標方程為;(2)將直線的參數方程(為參數)代入的方程,可得,,設,是點對應的參數值,,,則.【點睛】本題考查參數方程、普通方程、極坐標方程間的互化,直線參數方程的幾何意義,是一道容易題.22.(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據組合的方法求解兩種情況分別的情況數再求和即可.(2)易得“”共有種,“”共有種.再根據古典概型的方法可知,利用組合數的計算公式可得,當時根據題意有,共個;當時求得,再根據換元根據整除的方法求解滿足的正整數對即可.【詳解】解:(1)三個數乘積為有兩種情況:“”,“”,其中“”共有:種,“”共
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 粘土磚瓦市場營銷策略考核試卷
- 稀有稀土金屬壓延加工質量控制技術考核試卷
- 民宿的設計與開發
- 空氣呼吸器的使用方法
- 耳緣靜脈麻醉技術規范
- 外科消毒隔離管理規范
- 慢性疾病防治與管理要點
- 眼瞼腫物切除皮瓣設計
- trans-Clopenthixol-E-Clopenthixol-生命科學試劑-MCE
- BMS-309403-Standard-生命科學試劑-MCE
- 2024-2025學年八年級下冊道德與法治期末測試模擬卷(統編版)(含答案)
- 2025年社區工作者考試題目及答案
- 定額〔2025〕1號文-關于發布2018版電力建設工程概預算定額2024年度價格水平調整的通知
- 2023年貴州貴州貴安發展集團有限公司招聘筆試真題
- 李辛演講-現代人的壓力與管理
- 2024年山東鐵投集團招聘筆試參考題庫含答案解析
- 《云南省建筑工程資料管理規程應用指南)(上下冊)
- 數列求和中常見放縮方法和技巧(含答案)
- 寶興縣中藥材生產現狀及發展思路
- 胸外科圍手術期的氣道管理.ppt
- 國際經濟法案例分析(匯總)
評論
0/150
提交評論