計量經濟學Eviews操作95分線性回歸保費收入模型上機作業2003版 (2)_第1頁
計量經濟學Eviews操作95分線性回歸保費收入模型上機作業2003版 (2)_第2頁
計量經濟學Eviews操作95分線性回歸保費收入模型上機作業2003版 (2)_第3頁
計量經濟學Eviews操作95分線性回歸保費收入模型上機作業2003版 (2)_第4頁
計量經濟學Eviews操作95分線性回歸保費收入模型上機作業2003版 (2)_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、保費收入的相關數據表年份壽險保費收入(億元)yGDP(億元) x1城鎮居民家庭人均可支配收入(元) x2 城鎮恩格爾系數 x365歲以上人口占總人口百分數 x4社會保障基金支出(億元)x5通脹率(居民消費價格指數)x6利率(央行歷年存款利率%) x7199049.0818667.821510.254.245.57151.9103.12.16199163.1721781.51700.653.85.7176.1103.41.8199293.8626923.482026.653.045.82327.1106.41.8199385.9535333.922577.450.325.95482.2114.7

2、3.151994143.1348197.863496.250.046.07680124.13.151995160.960793.73428350.096.2877.1117.13.151996214.8171176.594838.948.766.411082.4108.31.981997390.4878973.035160.346.66.541339.2102,8 1.711998750.2284402.285425.144.666.71636.999.21.441999878.9589677.055854.0242.076.92108.198.60.99200099099214.556280

3、39.446.962385.6100.40.9920011423.52109655.176859.638.27.12748100.70.9920022274.8120332.697702.837.687.33471.599.20.7220033011135822.768472.237.17.54016.4101.20.7220043194159878.349421.637.77.64627.4103.90.7220053649184937.371049336.77.75401101.80.7220064061216314.4311759.535.87.96583101.50.722007494

4、9.7265810.3113785.836.298.17887.8104.80.7220087338314045.4315780.7637.898.39925.1105.90.3620098144.4340902.8117174.6536.528.512302.699.30.36201010501.1401202.0319109.4435.78.879014.243101.30.3620119560472881.621809.836.39.139547.935105.40.41、 提出并分析相關問題2、 利用數據,構造計量經濟學模型3、 估計并完成模型,對結果給出評價4、 對你的研究給出結論及

5、展望。1. 提出并分析相關問題提出問題:壽險保費收入與其他變量怎樣擬合能較好的解釋其變化?分析問題:壽險保費收入作為被解釋變量,可以在其他6個解釋變量下,通過一定的設計,做出有經濟學意義的回歸模型。一、首先要選擇合適的與壽險保費收入的經濟學理論和行為相關的變量。變量x1為GDP,在GDP越高的情況下,生產總值的提升說明社會發展水平提升,對壽險的重視程度很可能也隨之提高,因此人們的保費收入也會成正相關變化。變量x2為城鎮居民家庭人均可支配收入,與GDP類似,該變量與保費收入成正相關變化。但其沒有包括農村居民收入,因此有些局限性。還要通過進一步分析確定。變量x3城鎮恩格爾系數越低,說明居民花在食品

6、上的費用占總費用比重越小,其生活水平越高,按該情況居民應更有基礎注重保險業務。但從數據上來看,該變量若作為解釋變量,其系數應為負。也就是說明,該變量或許與Y的關系并不單純直接,應該還會有其他的因素影響。變量x4是65歲以上人口占總人口百分數,當該比例越大時,表明需要人壽保險的群體比重增加,保費收入也應該增加。變量x5社會保障基金支出的增長,有助于促進保費收入的增加。變量x6通脹率(居民消費價格指數)通貨膨脹率受很多方面的影響,同時大體上來看,它與保費收入的關系并不密切。變量x7利率(央行歷年存款利率%),利率一般是由央行根據整個經濟情況決定的,是個比較宏觀的(相對來說)變動較小經濟變量,同樣與

7、保費收入關系不密切,應予以剔除。二、結合散點圖,根據經濟行為理論,確定變量之間的數學關系。通過散點圖,可初步推斷y與x1x5有線性關系。y與x1x5散點圖同時,根據經濟學意義以及對各變量的分析(見上一標題),也可得出y與各變量成線性相關的關系。三根據經濟學意義確定剩下的變量的模型參數估計。同時注意他們之間的獨立性。可以通過數據,發現y與x1x5有正相關關系,故它們前面的系數應該都為正數。另外,通過相關系數矩陣,發現他們之間存在嚴重的多重共線性。有的相關系數甚至達到了0.99以上,對其的相關處理我將在后面進行。X1X2X3X4X5X6X110.995591-0.753970.9549790.94

8、7109-0.26679X20.9955911-0.806340.9770260.959676-0.2963X3-0.75397-0.806341-0.91088-0.79450.514843X40.9549790.977026-0.9108810.941551-0.39444X50.9471090.959676-0.79450.9415511-0.3265X6-0.26679-0.29630.514843-0.39444-0.326512. 利用數據,構造計量經濟學模型首先,對y做一個對所有變量的多元回歸模型。Dependent Variable: YMethod: Least Square

9、sDate: 06/05/13 Time: 20:21Sample: 1990 2011Included observations: 22VariableCoefficientStd. Errort-StatisticProb.  X10.0623560.0271342.2981040.0354X2-1.7164880.952013-1.8030080.0903X3190.6488150.88161.2635660.2245X44815.2673016.5981.5962580.1300X50.3827220.1511512.5320610.0222C-36195.4223

10、730.64-1.5252610.1467R-squared0.976812    Mean dependent var2814.867Adjusted R-squared0.969565    S.D. dependent var3315.807S.E. of regression578.4598    Akaike info criterion15.78562Sum squared resid5353852.    Schwarz

11、criterion16.08317Log likelihood-167.6418    Hannan-Quinn criter.15.85571F-statistic134.8008    Durbin-Watson stat1.910836Prob(F-statistic)0.000000發現t值較為顯著的僅有x1和x5.¥%&*()可繼續說明3. 估計并完成模型,對結果給出評價一、估計并完成模型:思路一:下面運用Eviews軟件系統自動逐步回歸法做出的多元線性模型為:VariableCoefficien

12、tStd. Errort-StatisticProb.*  X10.0249730.00101324.641620.0000X6-9.5160281.918036-4.9613390.0001R-squared0.967105    Mean dependent var2814.867Adjusted R-squared0.965460    S.D. dependent var3315.807S.E. of regression616.2375    A

13、kaike info criterion15.77165Sum squared resid7594973.    Schwarz criterion15.87084Log likelihood-171.4881    Hannan-Quinn criter.15.79502Durbin-Watson stat1.406837分析:可見其思路二:利用向前選擇法第一步,用每個解釋變量分別對被解釋變量做簡單回歸,得到 Y與x1:=-1013.927 +0.025092x1 (24.08990)R²=0.9666

14、85 F=580.3233 對x2=-1835.837 +0.551502x2(271.1357) (20.75179)R²= 0.9555618 F= 430.6369 對x3=x3(5.577219) (-4.759700)R²=0.531119 F= 22.65474 DW=0.172052 對X4X42946.593250.742911.751450.0000C-18188.991805.815-10.072450.0000R-squared0.873495    Mean dependent var2814.867Adjus

15、ted R-squared0.867170    S.D. dependent var3315.807S.E. of regression1208.475    Akaike info criterion17.11861Sum squared resid29208222    Schwarz criterion17.21780Log likelihood-186.3047    Hannan-Quinn criter.17.14198F

16、-statistic138.0967    Durbin-Watson stat0.316946Prob(F-statistic)0.000000=-18188.99+2946.593x4(-10.07245) (11.75145)R²=0.873495 F= 138.0967 DW=0.316946 對x5=0.77532x5(17.6609) R²=0.8893=294 DW=1.109666根據R²統計量的大小排序,可見解釋變量的重要程度依次為x1,x2,x5,x4,x3,第二步,以= -1013.927 +0.025

17、092x1為基礎,依次引入x2,x5,x4,x3,與逐步回歸法不同的是,不再引入已經刪除掉的變量。首先把x2引入模型回歸得VariableCoefficientStd. Errort-StatisticProb.  X10.0288710.0113592.5416310.0199X2-0.0839030.251106-0.3341350.7419C-882.9879445.3053-1.9828820.0620R-squared0.966879    Mean dependent var2814.867Adjusted R-squar

18、ed0.963393    S.D. dependent var3315.807S.E. of regression634.4133    Akaike info criterion15.86940Sum squared resid7647125.    Schwarz criterion16.01818Log likelihood-171.5634    Hannan-Quinn criter.15.90445F-statistic2

19、77.3292    Durbin-Watson stat1.447167Prob(F-statistic)0.000000Adjusted R-squared0.963393因為x2的引入是R 改善幅度較小,且x2的系數沒有通過t 顯著性檢驗 所以在模型中剔除x2,引入x5VariableCoefficientStd. Errort-StatisticProb.  X10.0207920.0031636.5735200.0000X50.1589270.1107171.4354280.1674C-984.6087202.5046-4.

20、8621560.0001R-squared0.969944    Mean dependent var2814.867Adjusted R-squared0.966780    S.D. dependent var3315.807S.E. of regression604.3485    Akaike info criterion15.77230Sum squared resid6939506.    Schwarz criterion

21、15.92108Log likelihood-170.4953    Hannan-Quinn criter.15.80735F-statistic306.5770    Durbin-Watson stat1.630647Prob(F-statistic)0.000000上一步的原因相同,剔除x5,引入x4VariableCoefficientStd. Errort-StatisticProb.  X10.0262900.0035917.3218950.0000X4-154.9759443.5

22、722-0.3493810.7306C-92.035372647.097-0.0347680.9726R-squared0.966897    Mean dependent var2814.867Adjusted R-squared0.963413    S.D. dependent var3315.807S.E. of regression634.2404    Akaike info criterion15.86886Sum squared resid7642957.&#

23、160;   Schwarz criterion16.01764Log likelihood-171.5574    Hannan-Quinn criter.15.90390F-statistic277.4856    Durbin-Watson stat1.458254Prob(F-statistic)0.000000剔除x4引入x3VariableCoefficientStd. Errort-StatisticProb.  X10.0256510.0016181

24、5.854170.0000X314.1244130.858780.4577110.6524C-1701.9401517.891-1.1212540.2762R-squared0.967048    Mean dependent var2814.867Adjusted R-squared0.963579    S.D. dependent var3315.807S.E. of regression632.7954    Akaike info criterion15.86430

25、Sum squared resid7608170.    Schwarz criterion16.01307Log likelihood-171.5072    Hannan-Quinn criter.15.89934F-statistic278.7978    Durbin-Watson stat1.456218Prob(F-statistic)0.000000剔除x3 引入x7VariableCoefficientStd. Errort-StatisticProb.

26、60; X10.0245560.00153316.019570.0000X7-104.7564215.6323-0.4858100.6327C-793.3857500.5261-1.5851040.1294R-squared0.967093    Mean dependent var2814.867Adjusted R-squared0.963630    S.D. dependent var3315.807S.E. of regression632.3592    

27、;Akaike info criterion15.86292Sum squared resid7597684.    Schwarz criterion16.01169Log likelihood-171.4921    Hannan-Quinn criter.15.89796F-statistic279.1957    Durbin-Watson stat1.403370Prob(F-statistic)0.000000剔除x7引入x6VariableCoefficient

28、Std. Errort-StatisticProb.  X10.0249460.00110222.643300.0000X6-11.1436822.36418-0.4982830.6240C175.01192395.3630.0730630.9425R-squared0.967114    Mean dependent var2814.867Adjusted R-squared0.963653    S.D. dependent var3315.807S.E. of regression632.

29、1575    Akaike info criterion15.86228Sum squared resid7592839.    Schwarz criterion16.01106Log likelihood-171.4851    Hannan-Quinn criter.15.89733F-statistic279.3799    Durbin-Watson stat1.402881Prob(F-statistic)0.000000

30、結果排除了x2x5所有變量,最后僅剩下x1的一元回歸。思考:雖然這樣擬合效果很好,但這種情況喪失了其他變量對Y的解釋能力。 因此,當R²的變化并沒有顯著減小的時候,可以考慮保留該變量。如此例中,根據R²和p值,依次保留x1,x2,x5(含截距項)VariableCoefficientStd. Errort-StatisticProb.  X50.2613840.1298062.0136480.0592X2-0.3979950.280448-1.4191410.1729X10.0359450.0111133.2344420.0046C-344.597249

31、2.2582-0.7000340.4929R-squared0.972969    Mean dependent var2814.867Adjusted R-squared0.968463    S.D. dependent var3315.807S.E. of regression588.8406    Akaike info criterion15.75715Sum squared resid6241198.    Schwarz

32、criterion15.95553Log likelihood-169.3287    Hannan-Quinn criter.15.80388F-statistic215.9633    Durbin-Watson stat1.963666Prob(F-statistic)0.000000無常數Dependent Variable: YMethod: Least SquaresDate: 06/01/13 Time: 10:11Sample: 1990 2011Included observations: 22V

33、ariableCoefficientStd. Errort-StatisticProb.  X50.3107390.1075172.8901370.0094X10.0424980.0059097.1922960.0000X2-0.5778570.110891-5.2110380.0000R-squared0.972233    Mean dependent var2814.867Adjusted R-squared0.969310    S.D. dependent var3315.807S.E

34、. of regression580.8847    Akaike info criterion15.69311Sum squared resid6411114.    Schwarz criterion15.84188Log likelihood-169.6242    Hannan-Quinn criter.15.72815Durbin-Watson stat1.992356根據t值以及擬合度的比較,選擇更好的不含截距項=0.042498x1-0.577857x2+0.3

35、10739x5Ra²=0.969310 DW=1.992356進一步分析:雖然擬合效果很好,但是x2的系數是負值,這與之前的期望不同,猜想這是由于與x1的嚴重的多重共線性造成的。處理:刪除變量x2,再次做出擬合。發現含截距項的比不含時擬合程度更很高。Dependent Variable: YMethod: Least SquaresDate: 06/01/13 Time: 21:03Sample (adjusted): 1990 2011Included observations: 22 after adjustmentsVariableCoefficientStd. Errort-

36、StatisticProb.  X50.1589270.1107171.4354280.1674X10.0207920.0031636.5735200.0000C-984.6087202.5046-4.8621560.0001R-squared0.969944    Mean dependent var2814.867Adjusted R-squared0.966780    S.D. dependent var3315.807S.E. of regression604.3485 &#

37、160;  Akaike info criterion15.77230Sum squared resid6939506.    Schwarz criterion15.92108Log likelihood-170.4953    Hannan-Quinn criter.15.80735F-statistic306.5770    Durbin-Watson stat1.630647Prob(F-statistic)0.000000=0.020792x1-

38、0.158927x5-984.6087Ra²=0.966780 DW=1.6306474. 二、給出評價多重共線角度X1和X5之間的多重共線性還是沒有消除,相信學習了“差分法”操作后,會有對模型的進一步優化。異方差性角度殘差變化圖 用x1、x5擬合的殘差圖異方差檢驗(White 檢驗)Include cross termHeteroskedasticity Test: WhiteF-statistic6.899998    Prob. F(5,16)0.0013Obs*R-squared15.02970   

39、60;Prob. Chi-Square(5)0.0102Scaled explained SS20.34198    Prob. Chi-Square(5)0.0011Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 06/05/13 Time: 23:34Sample: 1990 2011Included observations: 22VariableCoefficientStd. Errort-StatisticProb.  C-32057.81

40、384761.4-0.0833190.9346X119.0445613.868611.3732130.1886X12-0.0002105.74E-05-3.6529210.0021X1*X50.0151640.0043033.5241170.0028X5-804.7381406.3217-1.9805440.0651X52-0.2389800.075270-3.1749800.0059R-squared0.683168    Mean dependent var315432.1Adjusted R-squared0.584158  &

41、#160; S.D. dependent var615053.6S.E. of regression396622.2    Akaike info criterion28.84636Sum squared resid2.52E+12    Schwarz criterion29.14391Log likelihood-311.3099    Hannan-Quinn criter.28.91645F-statistic6.899998  

42、0; Durbin-Watson stat2.029000Prob(F-statistic)0.001308No cross termHeteroskedasticity Test: WhiteF-statistic6.043855    Prob. F(2,19)0.0093Obs*R-squared8.554172    Prob. Chi-Square(2)0.0139Scaled explained SS11.57766    Prob. Chi-Squar

43、e(2)0.0031Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 06/05/13 Time: 23:36Sample: 1990 2011Included observations: 22VariableCoefficientStd. Errort-StatisticProb.  C134931.9132617.11.0174550.3217X121.04E-053.46E-063.0181130.0071X52-0.0080510.004930-1.6330000.1189R-squ

44、ared0.388826    Mean dependent var315432.1Adjusted R-squared0.324492    S.D. dependent var615053.6S.E. of regression505508.3    Akaike info criterion29.23064Sum squared resid4.86E+12    Schwarz criterion29.37942Log likel

45、ihood-318.5370    Hannan-Quinn criter.29.26569F-statistic6.043855    Durbin-Watson stat2.607760Prob(F-statistic)0.009302綜合兩種情況,同方差的原假設被推翻,即認為存在異方差情況。利用WLS方法修正異方差,得到如下結果Included observations: 22Weighting series: 1/ABS(RESID)VariableCoefficientStd. Errort-Statis

46、ticProb.  X10.0158300.0025516.2051200.0000X50.2921160.0674054.3337270.0004C-819.365981.03558-10.111190.0000Weighted StatisticsR-squared0.998553    Mean dependent var2036.956Adjusted R-squared0.998400    S.D. dependent var3604.586S.E. of regression153

47、.4799    Akaike info criterion13.03114Sum squared resid447565.8    Schwarz criterion13.17992Log likelihood-140.3425    Hannan-Quinn criter.13.06619F-statistic6553.884    Durbin-Watson stat1.121655Prob(F-statistic)0.00000

48、0Unweighted StatisticsR-squared0.964401    Mean dependent var2814.867Adjusted R-squared0.960653    S.D. dependent var3315.807S.E. of regression657.7240    Sum squared resid8219415.Durbin-Watson stat1.550267通過修正,各方面的數據都得到了一定程度的改善。=0.015830x1+0.292116x5-819.3659Ra²=0.998400 DW=1.5502675. 對你的研究給出結論及展望。根據以上分析,y最終與x1、x5擬合,得出比較優良的結果,在此基礎上,得出20122015年的預測估計值。用t值分別

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論